
NOTATION 

C, c, dimensional and dimensionless impurity concentrations; Co, initial concentration; 
D, impurity-diffusion coefficient; L, 7R, Xp, parts of integration contour; s ai, di, 
coefficients in the expansion of the functions w = v + x 2 + y2 and Ifl 2 in the corresponding 
series of Eqs. (33) and (34); m = ut - z, dimensional coordinate of the moving coordinate 
system; h, halfwidth of the channel in plane problem; hl, h2, coefficients in the quadratic 
form of the velocity profile; Q, amount of impurity in some cross section of the channel per 
unit area; QI, amount of impurity per unit length in the three-dimensional case; P/Z, pres- 
sure difference per unit length of channel; p, Laplace-transformation variable; T, ~, in- 
ternal variables; t, time; u, maximum value of the velocity; Z, Y, Cartesian coordinates 
longitudinal and transverse to the flow; v, liquid velocity in channel; ~ = ~ - z, variable 
in coordinate system moving at velocity u; ~, viscosity of liquid; F(x), Euler gamma func- 
tion. 
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SOLUTION OF THE CONVERSE THERMAL CONDUCTIVITY PROBLEM WITH 

CONSIDERATION OF THE PERTURBING INFLUENCE OF THE THERMOCOUPLE 

S. L. Balakovskii and E. F. Baranovskii UDC 536.24 

Questions involving the use of an adequate model for temperature measurement in 
solving converse thermal conductivity problems are considered. 

Methods for solution of converse thermal conductivity problems are one of the most pro- 
mising means for adequate processing of data in thermophysical experiment. At the present 
time a number of highly effective methods have been developed for solution of such problems 
[i], although the majority of these can be used only under conditions where the perturbing 
action of thermocouples on heat propagation in the body under study can be neglected. In 
many cases of practical importance the effect of thermocouples is quite significant [2-5]. 

In particular, this is true in the study of processes of casting metals and alloys or 
in temperature measurements in a cutting instrument where the dimensions of the thermocouple, 
its insulation, and the channel in which these are located are comparable to the distances 
to the heat source and the area of the surface upon which it acts. In such cases the temper- 
ature sensor must be considered as an independent body with its own thermophysical and geo- 
metric characteristics, actively participating in heat exchange with the surrounding object. 
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Fig. i. Region of problem solution: 
i) object under study; 2) thermosen- 
sor insulation; 3) thermosensor. 

In some vicinity around the thermocouple the process of heat propagation in the object (Fig. 
i) can be described by the following mathematical model: 

c(r, z) O0 1 0 (r~(r, z) aO ) 0 ( 00) 
0-7 - =  r or T +-ffz ~(r, z ) - f f ,  (1) 

oI~=o = o, (2) 

ae, I _ ae ~=~= a_~_ze I =o, (3) 
Or r=o Or z = .  

_~ aOaz z=0 =q(~)" (4) 

A s s u m p t i o n s  h a v e  been  made h e r e  as  t o  i d e a l  t h e r m a l  c o n t a c t  b e t w e e n  t h e r m o c o u p l e - i n s u t a -  
t i o n ,  i n s u l a t i o n - w a l l ,  and i d e a l  c o n t a c t  b e t w e e n  t h e  t h e r m o c o u p l e  and o b j e c t  i s  a l s o  a s su med ,  
wh ich  i s  v a l i d  when t h e  t h e r m o c o u p l e  i s  a t t a c h e d  by c a p a c i t i v e  w e l d i n g .  The d i m e n s i o n s  o f  
t h e  r e g i o n  t o  be  s t u d i e d  R and H were  c h o s e n  s u f f i c i e n t l y  l a r g e  t o  e l i m i n a t e  t h e  e f f e c t  o f  
t h e  t h e r m o c o u p l e  a t  t h e  b o u n d a r i e s  o f  t h e  r e g i o n .  

E v a l u a t i o n s  o f  t h e  d i s t o r t i o n  o f  t h e  t e m p e r a t u r e  f i e l d  by t h e  t h e r m o c o u p l e  were  p e r -  
f o rmed  f o r  c h a n n e l  and t h e r m o c o u p l e  d i m e n s i o n s  and d e p t h  o f  l o c a t i o n  w i t h  r e s p e c t  t o  t h e  
h e a t e d  s u r f a c e  c h a r a c t e r i s t i c  o f  s t u d y  o f  t h e r m a l  p r o c e s s e s  in  m e t a l  and a l l o y  c a s t i n g  in  
a r o l l e r  c r y s t a l l i z e r  [ 6 ] .  The q u a n t i t y  c h o s e n  a s  a m e a s u r e  o f  d i s t o r t i o n  o f  t h e  t e m p e r a -  
t u r e  f i e l d  was t h e  d e v i a t i o n  o f  t h e  c a l c u l a t e d  t e m p e r a t u r e s  ~ a t  t h e  p o i n t  o f  t h e  o b j e c t  
where  t h e  t h e r m o c o u p l e  would be a t t a c h e d  in  t h e  p r e s e n c e  and a b s e n c e  o f  t h e  t h e r m o c o u p l e .  

To determine the factors which most strongly affect the value of ~, a series of calcula- 
tions was performed for various immersions of the thermocouple from the heated surface h and 
various thermocouple diameters. The thermocouple material was chromel, while the object to 
which it was attached was steel 45, with Teflon insulation. In performing the calculations 
model thermal fluxes were specified, varying over 1 sec from zero to 4.106 W/m 2 linearly. 

Results of the calculations permit the conclusion that the depth of thermocouple inser- 
tion over the range normally realized in practice, h = 0.5"10-3-3.10 -3 m, has an insignificant 
effect on ~. Much more significant is the diameter of the thermoelectrode (see Fig. 2, where 
data obtained for h = 10 -3 m and a thermal flux increasing with time as described above are 
shown). Figure 3 shows the temperature profile at a depth h = i0 -~ m, corresponding to the 
thermocouple installation depth 0.25 sec after commencement of heating from the specimen sur- 
face. As is evident from the figure, the radius of the thermocouple perturbing action com- 
prises about 2.10 -3 m for a channel radius of 0.6.10 -3 m. 

The analysis performed permits the conclusion that in a number of cases there is signifi- 
cant distortion of the temperature fields in objects under study due to the perturbing action 
of the thermocouple. 

Therefore, in order to obtain adequate information on thermal fluxes q(%) from thermo- 
couple indications f(~) we propose use of a model of heat propagation in the specimen Under 
study which includes heat exchange with the thermocouple. 
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Fig. 2. Distortion of temperature field vs thermoelectrode diameter d: 
l) d = 1.2"10 -3 m; 2) 3.10 -3. E, %; ~, sec. 

Fig. 3. Temperature profile in thermocouple vicinity: l) object of study; 
2) thermocouple insulation; 3) thermocouple, r'10 -3, m; T, ~ 

A solution of the problem of reconstruction of the function q(~) = -x(as/az)Iz= 0 was 
performed in extremal formulation by minimizing the functional 

.[mX. [O(q, 0, h, T)--f(T)] ~dr (5 d (q) ) 
0 

by the con jugate  g r a d i e n t  method. 

To c a l c u l a t e  O a boundary problem w i t h  c o n s i d e r a t i o n  o f  specimen heat  exchange w i t h  the 
thermocouple,  Eqs. ( 1 ) - ( 4 ) ,  was used. The g r a d i e n t  of  the f u n c t i o n a l  J ' q ( T )  was expressed 
i n  terms o f  the  con jugate  f u n c t i o n  ~ ( r ,  z, T) which was c a l c u l a t e d  from a s o l u t i o n  of  the 
boundary problem, ob ta ined  i n  t u r n  from the c o n d i t i o n  AL = 0 [1]  where the  Lagrangian L can 
be expressed i n  the  form 

i;;I > ( )I do 1 o dE) O DO ' 
L J -~ 2~z ~ - -  c 0--~" -~ ~r --Or r~, "~r + -~z X -~Z rdzdrdT.  ( 6 )  

o o o 

The problem mathematically conjugate to Eqs. 

--cV, z) a~ = !  a 
aT r Or 

(1)-(4) can be written as follows: 

a (~,(r,z)-~z)§ 

CN=-,,,,, = O, 

ar ! = ar I = ar l ar I~ = 0  ~-r ,=0 Or r=a az ~=0 = ~ - z  = .  

z, T) - f ('0) 8 (r) ,3 (z - h), (7) 

(8) 

(9) 

In this case the expression for calculation of the gradient of the functional has the form 

R " 

J~ (~) = - -  S ~ (r, O, T) dr.  (10)  
0 

The i t e r a t i v e  d e s c e n t  t o  t h e  minimum o f  Eq. (5 )  i s  a c c o m p l i s h e d  in  a c c o r d a n c e  w i t h  t h e  r eco m-  
m e n d a t i o n s  o f  [1]  by t h e  c o n j u g a t e  g r a d i e n t  method  w i t h  z e r o  i n i t i a l  a p p r o x i m a t i o n  o f  t h e  
unknown f u n c t i o n  q ( < ) .  

Fo r  a n u m e r i c a l  r e a l i z a t i o n  t h e  b o u n d a r y  p r o b l e m s  were  r e p l a c e d  by d i f f e r e n c e  e q u a t i o n s ,  
s o l u t i o n  o f  wh ich  was p e r f o r m e d  by t h e  l o c a l l y  o n e - d i m e n s i o n a l  method  w i t h  an  i m p l i c i t  
s cheme .  Mach ine  t i m e  r e q u i r e d  f o r  s o l u t i o n  o f  t h e  p r o b l e m  on an ES-1022 c o m p u t e r  was 4 min 
when u s i n g  a n o n u n i f o r m  s p a t i a l  g r i d  N r • N z • N< = 20 • 25 x 30. S o l u t i o n  o f  t h e  c o n v e r s e  
p r o b l e m ,  p e r f o r m e d  i t e r a t i v e l y ,  r e q u i r e d  a b o u t  2 h o f  m a c h i n e  t i m e .  The e f f i c i e n c y  o f  t h e  
me thod  d e v e l o p e d  i s  shown by F i g .  4 ,  wh ich  shows r e s u l t s  o f  r e c o n s t r u c t i o n  o f  t h e  model  
t h e r m a l  f l u x  u n d e r  c o n d i t i o n s  where  t h e  p e r t u r b i n g  i n f l u e n c e  o f  t h e  t h e r m o c o u p l e  i s  q u i t e  
h i g h .  The i n a c c u r a c y  o f  t h e  r e c o n s t r u c t i o n  does  n o t  e x c e e d  3% o v e r  p r a c t i c a l l y  t h e  e n t i r e  
t i m e  i n t e r v a l .  The d i v e r g e n c e  b e t w e e n  t h e  r e c o n s t r u c t e d  and a c t u a l  s o l u t i o n s  a t  t i m e s  c l o s e  
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Fig. 4. Solution of the converse thermal 
conductivity problem: I) model thermal 
flux density; 2) reconstructed flux density. 
q.10 -6, W/m 2. 

to ~m can be explained by the fact that in view of the incorrectness of the problem the finite 
value of the thermal flux density is not refined in the iteration process. 

In principle, the method developed here for solution of the converse thermal conductivity 
problem permits consideration of the perturbing effect of thermosensors of quite arbitrary 
construction, since change in construction would only lead to a change in formulation of the 
boundary problem of the type typified by Eqs. (1)-(4). 

NOTATION 

r, z, radial and axial corodinates; c, X, specific heat and thermal conductivity; 0, 
temperature; q(~), thermal flux density; T, current time; ~m, measurement time; f(T), input 
temperature; ~, conjugate function; J, functional; L, Lagrangian; 6, Dirac delta function. 

i. 

. 

3. 

. 

5. 
6. 
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